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Abstract—We propose a separation principle that enables a
systematic way of designing decentralized algorithms used in
consensus optimization. Specifically, we show that a decentralized
optimization algorithm can be constructed by combining a non-
decentralized base optimization algorithm and decentralized
consensus tracking. The separation principle provides modularity
in both the design and analysis of algorithms under an automated
convergence analysis framework using integral quadratic con-
straints (IQCs). We show that consensus tracking can be incor-
porated into the IQC-based analysis. The workflow is illustrated
through the design and analysis of a decentralized algorithm
based on the alternating direction method of multipliers.

Index Terms—Optimization algorithms, robust control

I. INTRODUCTION

IN THIS paper, we study algorithms for solving the con-
sensus optimization problem, which has the form

min.
x0∈Rd

f0(x0) :=
1

n

n∑

i=1

fi(x0).

We assume fi : Rd → R is convex for i = 1, 2, . . . , n
and the set of minimizers is nonempty. The name consensus
optimization is due to the fact that the problem can be made
equivalent to another optimization problem with a separable
objective function

∑n
i=1 fi(xi) by introducing local optimiza-

tion variables x1, x2, . . . , xn ∈ Rd and a consensus constraint
x1 = x2 = · · · = xn.

We are interested in algorithms that solve the consensus op-
timization problem in a decentralized manner. We shall make
a distinction between distributed and decentralized algorithms,
which are often used interchangeably in the literature; the
former permits the presence of a master node that collects
computational results from multiple worker nodes, whereas
the latter does not require a master node. Most existing de-
centralized algorithms used in consensus optimization belong
to one of the following two classes. The first one is based on
the gradient descent method or its variants (e.g., Nesterov’s
method). This includes, among others, the distributed gradient
descent method [10] (which is, in fact, decentralized despite
its name), DIGing [9], [14], and EXTRA [15]. See also [13]
for an algorithm based on Nesterov’s method and [21] for
handling directed communication graphs. The second one is
based on operator splitting methods, of which the most widely
used is the Douglas–Rachford method [12] or its application
to the dual problem, the alternating direction method of multi-
pliers (ADMM) [1]. Although the original ADMM algorithm,
when directly applied to the consensus optimization problem,
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requires a master node and therefore is not decentralized, it
has been shown that ADMM can be made decentralized by
reformulating the consensus constraint [16], [20].

Despite a vast body of literature on decentralized optimiza-
tion algorithms in recent years, there has been little work on
systematic understanding and designing of decentralized algo-
rithms. As a result, whenever the base optimization algorithm
changes (e.g., from regular gradient descent to accelerated
gradient descent) or the conditions on the communication
graph changes (e.g., from undirected to directed), a conver-
gence analysis of the new algorithm needs to be started almost
from scratch. This paper seeks a framework that enables a
systematic design of decentralized optimization algorithms in
the hope of speeding up the development of new algorithms.

We believe that such a framework can be made possible
through the automated convergence analysis of optimization
algorithms proposed recently by Lessard et al. [7] Unlike
traditional proof-based analysis that needs to be carried out
manually, their automated convergence analysis uses computa-
tional tools to establish a numerical certificate of convergence
for optimization algorithms. The key is to view an optimization
algorithm as a feedback interconnection of a linear system
and a nonlinear uncertain system characterized by integral
quadratic constraints (IQCs) [8]. In this view, convergence
of optimization algorithms can be established by certifying
stability of the feedback interconnection.

Contribution: The main contribution of this paper is a
separation principle for the design of decentralized algorithms
used in consensus optimization. Specifically, one can start with
a non-decentralized base optimization algorithm and replace
the (static) averaging operation therein with decentralized
average consensus tracking, which is designed independently
from the base algorithm. While a similar idea was previously
conjectured in [14, Rem. 1], we show that the separation
between the base algorithm and consensus tracking brings
modularity and a number of associated benefits. Such an
approach not only enables a systematic way of designing
decentralized optimization algorithms but is also amenable to
automated convergence analysis based on IQCs. We believe
that the result will help unify existing decentralized algorithms
and eventually facilitate the development of new algorithms.

When applied to known settings (i.e., same base algorithm,
same conditions on the communication graph), the result of
this paper is not guaranteed to yield a better (e.g., with faster
convergence, or more robust) decentralized algorithm than
existing ones; our main focus is a more principled design
procedure rather than optimality.



II. MAIN RESULTS

A. Notation

Denote by 1 the column vector of all ones, ‖·‖ the `2-norm
of a vector, In the n × n identity matrix (size omitted when
clear from the context), ⊗ the Kronecker product, and σmax(·)
the maximum singular value of a matrix. We define J :=
11T /n and J⊥ := I − J . We use exclusively W to denote a
symmetric irreducible doubly stochastic matrix (called gossip
matrix in the setting of consensus): W1 = 1 and 1TW = 1T .
For a symmetric matrix P , we write P � 0 if P is positive
semidefinite. For a differentiable function f , we denote by ∇f
the gradient of f . We often use ∗ to denote objects that can
be inferred from symmetry.

In decentralized optimization, each node keeps its own local
variables. We reserve the subscript for indexing the nodes and
the superscript for indexing a given sequence. For example,
xi ∈ Rd represents a local variable that belongs to node i,
whereas a sequence is denoted by {xk}k≥0 := {x0, x1, . . . }.
We sometimes use a second superscript as in, e.g., (x1,k, x2,k)
to index components in a tuple. For any convergent sequence
{xk}, we use x? to denote its limit or, alternatively, steady-
state value. We use the notation

x :=
[
x1 x2 · · · xn

]T ∈ Rn×d

to denote the matrix whose rows are formed by local variables
x1, x2, . . . , xn ∈ Rd, and we define ave(x) := 1

n

∑n
i=1 xi =

1
nx

T1 ∈ Rd. Similarly, we use the notation

∇f(x) :=
[
∇f1(x1) · · · ∇fn(xn)

]T ∈ Rn×d

to denote the list of local gradients.

B. Problem description

We investigate algorithms that solve the consensus optimiza-
tion problem and can be expressed in one of the following two
forms.

1) Centralized algorithms:

ξk+1
0 = A0ξ

k
0 +B0 ave(u

k) (1a)

vk0 = C0ξ
k
0 +D0 ave(u

k) (1b)

uki = φi(v
k
0 ), i = 1, 2, . . . , n. (1c)

2) Distributed algorithms: for i = 1, 2, . . . , n,

ξk+1
i = Aiξ

k
i +Bloc,iu

k
i +Bi ave(u

k) (2a)

vki = Ciξ
k
i +Dloc,iu

k
i +Di ave(u

k) (2b)

uki = φi(v
k
i ). (2c)

In both cases, φi is a continuous but possibly nonlinear
function; Ai, Bi, Ci, Di, Bloc,i, and Dloc,i are all constant ma-
trices of appropriate dimensions. (The subscript “loc” stands
for local.) We give for each case one example algorithm
that solves the consensus optimization problem. To simplify
notation, we assume in the remaining part of this section that
each fi is smooth, but we expect the result to generalize to
nonsmooth objective functions via the use of subdifferentials.

Example 1 (Gradient descent). When applied to consensus
optimization, the gradient descent algorithm becomes

xk+1
0 = xk0 − η∇f0(xk0) = xk0 −

η

n

n∑

i=1

∇fi(xk0),

where η > 0 is a constant. Define ξk0 := xk0 , vk0 := ξk0 , and
uki := ∇fi(vk0 ). The gradient descent algorithm can be written
as

ξk+1
0 = ξk0 − η ave(uk), vk0 = ξk0 .

Example 2 (ADMM). When applied to consensus optimiza-
tion, the ADMM algorithm becomes [1, p. 50]

xk+1
i = ave(xk)− (yki + wki )/ρ

yk+1
i = ave(wk)− wki
wki = ∇fi(xk+1

i ),

where ρ > 0 is a constant. Define ξki := (xki , y
k
i ),

vki = (v1,k
i , v2,k

i ) := (xki , x
k+1
i ), and uki = (u1,k

i , u2,k
i ) :=

(v1,k
i ,∇fi(v2,k

i )). The ADMM algorithm can be written as

ξk+1
i =

[
0 − Iρ
0 0

]
ξki +

[
− Iρ
−I

]
u2,k
i +

[
ave(u1,k)
ave(u2,k)

]

vki =

[
I 0
0 − Iρ

]
ξki +

[
0
− Iρ

]
u2,k
i +

[
0

ave(u1,k)

]
.

The algorithms given in (1) and (2) are not fully decentral-
ized because evaluating ave requires a master node to collect
information from all the nodes. Moreover, in the first case of
centralized algorithms, the computation in (1a) and (1b) needs
to be completed by the master node as well and therefore is
not decentralized either. Our goal in this paper is to develop a
systematic procedure for converting an existing algorithm of
the form (1) or (2) into a decentralized algorithm.

C. Main results

The key component in our procedure of decentralization
is consensus tracking. We say that a dynamical system Gcon

achieves average consensus tracking (or simply consensus
tracking) if for any sequence s = {sk ∈ Rn×d} converging to
s?, the output ŝ = Gcons converges to Js?. An example of a
system that achieves consensus tracking (used in the DIGing
algorithm [9], [14]) is given by

ŝk+1 = Wŝk + (sk+1 − sk), ŝ0 = s0. (3)

Systems that achieve consensus tracking are not unique. For
example, the system in (3) can be modified slightly as

ŝk+1 = W (ŝk + sk+1 − sk), ŝ0 = Ws0, (4)

which can be shown to also achieve consensus tracking.
The main idea behind converting an algorithm of the

form (1) or (2) into a decentralized one is to replace the ave
operator with a system Gcon that achieves consensus tracking.
In addition, the computation in (1a) and (1b) also needs to be
decentralized, which can be handled by consensus tracking as
well. For centralized algorithms of the form (1), the resulting
decentralized algorithm after conversion is described in the
theorem below and also illustrated in Fig. 1.



Theorem 3. Suppose Gcon is a system that achieves consensus
tracking, and ξ?0 is a possible steady-state value of ξ0 in (1).
Then, ξ?0 is also a steady-state value of ξi in

ξk+1
i = A0ξ

k
i +B0û

k
i (5a)

vki = C0ξ
k
i +D0û

k
i (5b)

uki = φi(v̂
k
i ) (5c)

for i = 1, 2, . . . , n, where û = Gconu and v̂ = Gconv.

Proof: Recall that if u? is a possible steady-state value
of u, then the corresponding steady-state value of û = Gconu
is given by û? = Ju? or equivalently û?i = ave(u?).
Suppose (ξ?0 , v

?
0 , u

?) is a steady-state value of (ξ0, v0, u) in (1).
From (1a), we know ξ?0 = A0ξ

?
0 +B0 ave(u

?), which implies
that (5a) is satisfied when ξki = ξ?0 and ûki = ave(u?) for all k.
By checking (5b) and (5c) in a similar way, one can verify that
(ξ?0 , v

?
0 , u

?
i , v

?
0 , ave(u

?)) is a steady-value of (ξi, vi, ui, v̂i, ûi)
in (5) for i = 1, 2, . . . , n.

Theorem 3 holds similarly for distributed algorithms of
the form (2). The only difference is that we no longer need
to apply consensus tracking on v as in Theorem 3, because
ave(uk) is the only computation that prevents decentralization
in (2).

Corollary 4. Suppose Gcon is a system that achieves consen-
sus tracking, and ξ? is a possible steady-state value of ξ in (2).
Then, ξ? is also a steady-state value of ξ in

ξk+1
i = Aiξ

k
i +Bloc,iu

k
i +Biû

k
i

vki = Ciξ
k
i +Dloc,iu

k
i +Diû

k
i

uki = φi(v
k
i )

for i = 1, 2, . . . , n, where û = Gconu.

Theorem 3 and Corollary 4 give an equivalent decentralized
algorithm that admits the same steady-state solution as the
original algorithm. We give a few examples to illustrate how
to use the result to decentralize an existing algorithm. We first
give an example on the application to the gradient descent
algorithm in Example 1.

Example 5 (Decentralized gradient descent). We use the
system in (3) as Gcon and derive its state space model by
defining ζk := ŝk − sk:

ζk+1 = Wζk + (W − I)sk, ŝk = ζk + sk, ζ0 = 0.

Then, we can apply Theorem 3 and obtain the following
decentralized gradient descent algorithm:

ξk+1 = ξk − ηûk, vk = ξk, uk = ∇f(v̂k) (6a)

ζk+1
v = Wζkv + (W − I)vk, v̂k = ζkv + vk (6b)

ζk+1
u = Wζku + (W − I)uk, ûk = ζku + uk, (6c)

where the initial condition is given by ζ0
v = 0 and ζ0

u = 0.
Equation (6a) retains the original dynamics of the (centralized)
gradient descent algorithm. The new equations (6b) and (6c)
are due to the consensus tracking v̂ = Gconv and û = Gconu
of v and u, respectively. It is not difficult to verify from (6)
that v̂ and u satisfy

v̂k+2 = 2Wv̂k+1 −W 2v̂k − η(uk+1 − uk),

ϕ1

ϕ2

...

ϕn

ave
sys0

sys0 :=

[
A0 B0

C0 D0

]

u0 = ave(u)
v0

u1

u2

un

(a) Centralized algorithm.

sys0

sys0
...

sys0

Gcon

ϕ1

ϕ2

...

ϕn

Gcon

v1

v2

vn

v̂1

v̂2

v̂n

u1

u2

un

û1

û2

ûn

Node 1

(b) Corresponding decentralized algorithm.

Fig. 1. Comparison between a centralized algorithm and the corresponding
decentralized algorithm (Theorem 3) with consensus tracking.

which recovers the dynamics of the DIGing algorithm in [9].
This should not come as a surprise, because the DIGing
algorithm is based on consensus tracking of the average
gradient.

Next, we consider the ADMM algorithm in Example 2 and
apply Corollary 4 to obtain a decentralized algorithm.

Example 6 (Decentralized ADMM). We use the system given
in (4) as Gcon and apply Corollary 4 to the ADMM algorithm
in Example 2. To make the algorithm more readable, we use
the original optimization variables x, y ∈ Rn×d instead of ξ
and write the algorithm as

xk+1 = Jxk − (yk + wk)/ρ, yk+1 = Jwk − wk

vk = Jxk − (yk + wk)/ρ, wk = ∇f(vk).

To apply Corollary 4, we only need to replace Jx with the
consensus tracking x̂ = Gconx of x, and similarly for Ju. The
corresponding decentralized algorithm is given by

xk+1 = x̂k − (yk + wk)/ρ, yk+1 = ŵk − wk (7a)

vk = x̂k − (yk + wk)/ρ, wk = ∇f(vk) (7b)

ζk+1
x = Wζkx + (W 2 −W )xk, x̂k = ζkx +Wxk (7c)

ζk+1
w = Wζkw + (W 2 −W )wk, ŵk = ζkw +Wwk, (7d)

where the initial condition is given by ζ0
x = 0 and ζ0

w = 0.
Similar to Example 5, equations (7a) and (7b) retain the
original ADMM dynamics, except that Jxk and Jwk are
replaced respectively by x̂k and ŵk, which are the output from
consensus tracking given in (7c) and (7d).



D. Discussions

The result in Theorem 3 can be viewed as a separation
principle for designing decentralized optimization algorithms.
Specifically, a decentralized optimization algorithm can be
formed by a non-decentralized base optimization algorithm
(e.g., gradient descent, ADMM) and a decentralized consensus
tracking system Gcon. The system Gcon can be viewed as an
approximation of the averaging operator ave that appears in the
base algorithm; the faster Gcon reaches consensus, the better
the approximation. The separation principle, however, does
not require an explicit separation in time scale between the
base algorithm and consensus tracking, which has been used
in some previous work on decentralized gradient descent [2],
[6].

For converting centralized algorithms of the form (1), an
additional consensus tracking system Gcon is required. The
conversion procedure can be interpreted as follows. Recall
that the computation in (1a)–(1b) still takes place centrally
(within “sys0” in Fig. 1a) even when ave is replaced by
a decentralized implementation. To make the computation
decentralized, we create n identical copies of sys0, one at
each node. Despite being identical to each other, each sys0

will generate a different output vi, because we can no longer
guarantee û1 = û2 = · · · = ûn after ave is replaced by
Gcon. Therefore, we need to use an additional Gcon to enforce
consensus among all copies of sys0.

To illustrate the importance of the additional Gcon for
centralized algorithms, consider again the gradient descent
algorithm in Example 1. Without the additional Gcon, the
resulting decentralized algorithm would become

ξk+1 = ξk − ηûk, vk = ξk, uk = ∇f(vk) (8a)

ζk+1
u = Wζku + (W − I)uk, ûk = ζku + uk, (8b)

where the initial condition is given by ζ0
u = 0. In steady state,

we must have û? = 0 from (8a) and hence ζ?u + u? = 0
from (8b). We also know 1T ζku = 0 for all k based on the
initial condition and (8b). From these, we can only conclude
1Tu? = 0 or equivalently

∑n
i=1∇fi(v?i ) = 0. Therefore, we

cannot obtain an optimal solution unless we have v?1 = v?2 =
· · · = v?n, which could have been enforced by the additional
Gcon.

One benefit brought by the separation principle is that it
allows us to derive a different decentralized algorithm by
simply changing the consensus tracking system Gcon. For
example, using the system in (4) instead as Gcon, we can
obtain another decentralized gradient descent algorithm similar
to (6), except that (6b) and (6c) are replaced by

ζk+1
v = Wζkv + (W 2 −W )vk, v̂k = ζkv +Wvk

ζk+1
u = Wζku + (W 2 −W )uk, ûk = ζku +Wuk.

This can potentially permit the integration of existing results
on dynamic average consensus [22] to handle other types of
communication graphs (e.g., time-varying, directed). Another
benefit of separation is reflected in the analysis of the resulting
decentralized algorithm using the IQC framework proposed
in [7], which provides automated convergence analysis of
optimization algorithms. Separation allows immediate reuse of

existing results derived for the base optimization algorithms,
whereas it only remains to incorporate the consensus tracking
system Gcon into the IQC framework. This will be discussed
in detail in Section III.

Compared with the recent result in [18] on unifying de-
centralized first-order optimization algorithms, we have not
been able to recover certain gradient-based methods such as
EXTRA [15]. Meanwhile, as shown in Example 6, our work
is able to construct a new decentralized ADMM algorithm,
whereas it is unclear whether the result in [18] is able
to include decentralized first-order proximal methods (e.g.,
ADMM), which use gradients implicitly.

III. CONVERGENCE ANALYSIS

We now show how to apply the IQC framework for auto-
mated convergence analysis of the decentralized algorithms
obtained through Theorem 3. Throughout this section, we
assume each fi is µ-strongly convex and β-smooth, i.e., there
exist µ > 0 and β > 0 such that

µ ‖x− y‖2 ≤ (∇fi(x)−∇fi(y))
T

(x− y) ≤ β ‖x− y‖2

holds for all x, y ∈ Rd. This assumption enables us to simplify
the presentation and is not a limitation of the IQC analysis
framework. For example, a similar IQC-based analysis has
been developed when the assumption on strong convexity is
removed [3], [4], [5].

A. IQC preliminaries

Many optimization algorithms, including the gradient de-
scent method and ADMM presented in Examples 1 and 2,
can be viewed as a feedback interconnection of the form

ξk+1 = Aξk +Buk, vk = Cξk +Duk (9a)

uk = φ(vk). (9b)

We assume that the feedback interconnection is well-posed,
which holds for both the gradient descent method and ADMM.
In the view of (9), convergence analysis of an optimization
algorithm becomes stability analysis of the interconnection (9).
The IQC framework treats the nonlinearity φ as an uncertain
system whose input v and output u are constrained by a
quadratic inequality

(zk − z?)TM(zk − z?) ≥ 0 ∀k, (10)

where z = Ψ(v, u) is a filtered version of (v, u):

ψk+1 = AΨψ
k +BΨ

[
vk

uk

]
, zk = CΨψ

k +DΨ

[
vk

uk

]
.

(Equation (10) is a special form of IQC called pointwise IQC.
Refer to [7] for more general IQCs.) For example, when uk =
φ(vk) = ∇f0(vk), based on strong convexity and smoothness
of f0, an IQC for φ is given by

(zk − z?)T
([

2µβ µ+ β
∗ −2

]
⊗ Id

)
(zk − z?) ≥ 0,



where zk = (vk, uk). It can be shown (cf. [7]) that (9)
converges exponentially (linearly in the terminology used in
optimization) with rate τ if there exists P � 0 such that

[
ATPA− τ2P ATPB

∗ BTPB

]
⊗ Id

+ (∗)T (M ⊗ Id)
([

C D
0 I

]
⊗ Id

)
� 0,

which is equivalent to
[
ATPA− τ2P ATPB

∗ BTPB

]
+ [∗]T M

[
C D
0 I

]
� 0.

The last step is called lossless dimensionality reduction [7,
Sec. 4.2] and has a useful interpretation: for convergence
analysis, we can assume d = 1 without loss of generality. This
is consistent with the well-known fact that the convergence
rate of many optimization algorithms does not depend on the
dimension d of the optimization variable. From here on, we
will assume d = 1 to simplify notation. For convenience, we
will sometimes abuse the terminology and still use the term
convergence rate even when τ > 1, i.e., when the algorithm
diverges.

B. Convergence analysis with a known gossip matrix

We now use the IQC framework to analyze the convergence
of a decentralized algorithm obtained through Theorem 3.
If the gossip matrix W in Gcon is known, we can include
the dynamics of Gcon in (9a) while keeping the same IQC
for the nonlinear map in (9b). For example, we can write
the decentralized ADMM algorithm (7) in the form of (9)
by choosing ξ = (x, y, ζx, ζw). We adopt the normalization
in [11] and choose ρ = ρ0

√
µβ for some fixed ρ0 > 0,

which is equivalent to choosing ρ = 1, µ = ρ−1
0 κ−

1
2 , and

β = ρ−1
0 κ

1
2 , where κ := β/µ is the condition number. We did

not optimize over ρ0, which can be chosen by a line search.
The IQCs are given by (zj,k − zj,?)TMj(z

j,k − zj,?) ≥ 0 for
j = 1, 2, 3, where z1,k = (vk, wk),

M1 =

[
2ρ−2

0 In ρ−1
0 (κ

1
2 + κ−

1
2 )In

∗ −2In

]
, (11)

z2,k = 1T ζkx , M2 = −1, z3,k = 1T ζkw, and M3 = −1. The
IQC (11) comes from the properties of f . The other two IQCs
encode the constraints 1T ζkx = 0 and 1T ζkw = 0, which are
a result of the dynamics given by (7c) and (7d) under the
zero initial condition ζ0

x = 0 and ζ0
w = 0. We computed the

convergence rate τ for

W =

[
0.6 0.4
0.4 0.6

]

and compare in Fig. 2a with simulated convergence rates
for randomly generated quadratic programs. In this case, the
bound on τ obtained from the IQC analysis is tight. The same
IQC analysis is, however, not tight for an arbitrarily chosen
5×5 gossip matrix W , as can be seen from Fig. 2b. It is well
known that the conservatism of IQC analysis can be reduced
by enriching the class of IQCs used. For example, an improved
upper bound (shown in black in Fig. 2b) can be obtained
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Fig. 2. IQC analysis vs. simulation for randomly generated quadratic
programs (105 runs, only maximum and minimum rates are shown). ρ0 = 1.

by replacing (11) with n similar IQCs for each (vi, wi) and
adding the weighted off-by-one IQC in [7, Lem. 10]. The
upper bound on τ exceeds 1 for large κ. It remains unclear
whether this is because the upper bound is too conservative or
because the algorithm actually diverges.

C. Convergence analysis with an unknown gossip matrix

The IQC analysis in Sec. III-B relies on knowing the exact
gossip matrix W . If only the second-largest singular value
σ2 := σmax(J − W ) of W is known, which is a common
assumption in the analysis of decentralized algorithms, it is
no longer possible to include Gcon directly into the system
dynamics (9a). Instead, we choose to treat Gcon as an uncertain
system that can be characterized also by IQCs.

For the purpose of illustration, we will derive an IQC
characterization of the consensus tracking system Gcon given
in (4), whose input is s and output is ŝ. Because the steady-
state value of s and ŝ are related by ŝ? = Js?, we define
s̄ := ŝ − Js so as to eliminate the steady-state component.
Then, it can be shown that s̄ and s satisfy

s̄k+1 = Ws̄k + (W − J)(sk+1 − sk), s̄0 = (W − J)s0.

As a result, we have 1T s̄0 = 0 and 1T s̄k+1 = 1T s̄k for all k,
i.e., 1T s̄k = 0 for all k. We write W = J + J⊥W̄J⊥, where
W̄ ∈ Rn×n satisfies σmax(W̄ ) = σ2. Then, we have

s̄k+1 = J⊥W̄J⊥(s̄k + sk+1 − sk)

and hence
∥∥s̄k+1

∥∥ ≤ σ2

∥∥J⊥(s̄k + sk+1 − sk)
∥∥ , (12)

which can be described by an IQC with z1,k = (s̄k, J⊥(s̄k−1+
sk − sk−1)) and

M1 =

[
−I 0
∗ σ2

2I

]
.



We also add an IQC with z2,k = s̄k and M2 = −J to
encode the constraint 1T s̄k = 0, which was not captured
by (12). Define a filter Ψcon such that (z1,·, z2,·) = Ψcon(s, s̄).
We can carry out a convergence analysis of (7) by forming
an interconnection of the following four systems: (v, x) =
GADMM(w, x̂, ŵ), where GADMM is given by (7a)–(7b), z∇ =
(v, w), zx = Ψcon(x, x̂ − Jx), and zw = Ψcon(w, ŵ − Jw).
The input to the interconnection is (w, x̂, ŵ), and the output
from the interconnection is (z∇, zx, zw). The output obeys
the following IQCs: z∇ is constrained by M1 in (11), and
both zx and zw are constrained by the two matrices M1

and M2 associated with Ψcon. It can be verified that every
matrix used in the IQC analysis is a block matrix whose
blocks are linear combinations of J and J⊥. Therefore, the
dimensionality reduction in [17] can be applied so that the
analysis does not depend on n.

We computed the worst-case convergence rate when only
σ2 is known. The result for different values of σ2 is shown
in Fig. 3. As expected, the convergence rate becomes slower
as σ2 increases. By comparing the result for σ2 = 0.2 with
Fig. 2a, it can be seen that the worst-case convergence analysis
is more conservative. Similar to the IQC characterization (11)
of the gradient, it is also possible to enrich the class of IQCs
used for characterizing (12) to obtain a better upper bound on
τ (cf. [19, Sec. 5.3], which was used in generating Fig. 3).

10
0

10
1

10
2

Condition number κ

0.5

0.6

0.7

0.8

0.9

1

C
o

n
v
e

rg
e

n
c
e

 r
a

te
 τ

σ
2
 = 0.3

σ
2
 = 0.2

σ
2
 = 0.1

σ
2
 = 0

Fig. 3. IQC analysis based on the second-largest singular value σ2 of W .

IV. CONCLUSIONS

We have proposed a separation principle for designing de-
centralized algorithms used in consensus optimization. Specif-
ically, a decentralized optimization algorithm can be con-
structed by combining a non-decentralized base optimization
algorithm and decentralized consensus tracking; the latter
replaces the averaging operation that appears in the base al-
gorithm. The separation principle provides modularity in both
the design and analysis of algorithms. For design, the principle
allows one to choose any combination of a base algorithm
and a consensus tracking algorithm. For analysis, modularity
is enabled by the automated convergence analysis based on
IQCs, which is capable of integrating consensus tracking,
regardless of whether the underlying gossip matrix is known.
As a result, convergence of the decentralized algorithm can be
readily analyzed as long as the base algorithm has an existing
IQC characterization; the computation is as simple as calculat-
ing the interconnection of multiple linear dynamical systems
coming from the base algorithm and consensus tracking. The
workflow of design and analysis has been illustrated using

a decentralized ADMM algorithm. We believe that the same
principle also applies to other optimization problems that only
require local information sharing, e.g., when locally coupled
objective function and/or constraints are present (cf. [1, Sec.
7.2]).
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[9] A. Nedić, A. Olshevsky, and W. Shi. Achieving geometric convergence
for distributed optimization over time-varying graphs. SIAM J. Optim.,
27(4):2597–2633, 2017.
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