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Abstract— 1 Demand management through pricing is a
modern approach that can improve the efficiency of modern
power networks. However, computing optimal prices requires
access to data that individuals consider private. We present a
novel approach for computing prices while providing privacy
guarantees under the differential privacy framework. Differen-
tially private prices are computed through a distributed utility
maximization problem with each individual perturbing their
own utility function. Privacy concerning temporal localization
and monitoring of an individual’s activity is enforced in
the process. The proposed scheme provides formal privacy
guarantees and its performance-privacy trade-off is evaluated
quantitatively.

I. INTRODUCTION

Modern power networks are equipped with smart meters
that allow sensing in a very fine spatial and temporal scale,
which enables new features and allows for more efficient
operation. Demand response is an emerging feature of power
networks that publishes real-time prices as a means of
providing incentives to individuals to modify their power
consumption towards a more efficient network operation
[13], [7]. The increasing amount of information captured and
communicated by new techniques has raised concerns about
the privacy of individuals [8]. In particular, habits and activi-
ties can be inferred from an individual’s power consumption
trace [4]. However, the computation of electricity prices,
which is formulated as an optimization problem, requires
each individual to report their preference and can lead to
severe loss of privacy.

In this work, we employ the formal notion of differen-
tial privacy [2], [3] in order to provide privacy guarantees
for individuals while computing electricity prices. From a
theoretical point of view, providing privacy in distributed
optimization problems can severely deteriorate the perfor-
mance of the system when incorporated in a naive way [5].
Intuitively, successive queries to private data can quickly
deplete the privacy budget, while making only small steps
towards optimality. However, there have been applications
of differential privacy in aggregation schemes that sacrifice
almost no performance while providing privacy [10]. This
is in accordance with the intuition that massive aggregation
schemes should provide privacy with minimal noise injec-
tion.
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Existing work on privacy in smart grids spans a vari-
ety of directions. A signal processing treatment of provid-
ing privacy of an individual’s activities given her power
consumption trace was proposed in [14], which provides
information-theoretic privacy guarantees. Besides being dif-
ficult in handling physical constraints, such approaches en-
force privacy in a probabilistic sense, i.e., there may be severe
privacy breaches for rare realizations of the system that
cannot be captured by these approaches. A different approach
employs differential privacy [1] to hide an individual’s ac-
tivity by using a rechargeable battery that adds noise to
the individual’s power consumption trace. Other approaches
include computing an individual’s billing information under
privacy constraints [12]. However, our work focuses on a
different problem. Individuals are interested in coordinating
their power consumption in order to maximize the total
utility they enjoy, while having formal privacy guarantees on
private information they communicate. Note that the scheme
presented here can be used in tandem with aforementioned
techniques for a more complete privacy-aware smart grid
paradigm.

This paper is structured as follows. In Section II, we
present the system model which is based on maximizing the
total utility that society enjoys. The desired privacy guaran-
tees are presented in Section III and the proposed architecture
in Section IV. Simulations depicting how efficiency degrades
with increasing privacy and discussion on future directions
follow in Sections V and VI, respectively.

II. SMART GRID PRICING

In this section, we present the model of a smart grid
which we will work with. In Subsection II-A a utility-
oriented model is described and in Subsection II-B the
problem of operating the model in order to maximize utility
is revisited.

A. Utility Modelling

We use a utility maximization scheme similar to the ones
displayed in [13] and [7]. Consider a set V = {1, . . . , n}
of nodes, where each node represents an individual which,
according to the micro-grids paradigm, either consumes or
provides power to the network. In this context, there is no
underlying network on the set of nodes. Each node i ∈ V
has a type σ(i) ∈ {1, . . . ,K} that can represent a residential
unit, a power plant, or an HVAC system. A node i with
type σ(i) possesses a parameter vector xi ∈ RT×nσ(i) which
captures the activity of the node, where T is the finite time



horizon and Rnσ is the parameter space of type σ for each
time instant. Finally, each node i with parameter vector xi
provides utility Uσ(i)(y;xi,t) when consuming y amount of
electricity.

Consider the following examples:
• Example 1 (PHEV): Efficiently scheduling the charging

period of a Plug-in Hybrid Electric Vehicle (PHEV) is
one promising application of the smart grid paradigm.
Assume in this case that nσ(i) = 1 and xi,t captures
the availability of the vehicle for charging. The corre-
sponding utility function can then be expressed in the
following form:

UPHEV(yi,t;xi,t) = xi,tyi,t,

where:

xi,t =

{
1, when PHEV is available for charging
0, otherwise

It should be highlighted that an individual’s activity
can be inferred from the vector of parameters xi. In
particular, the time instances t that individual i plans a
trip are designated with the parameter xi,t being zero.
Note that parameters x capture only the usage of a
PHEV and not its existence.

• Example 2 (HVAC): A similar example is the operation
of an HVAC unit. In this case, a natural parametrization
xi ∈ RT×2, with nσ(i) = 2 dimensions, is the number
of occupants in a building x

(1)
i,t and the temperature

set point x(2)
i,t at each time instance t. Note that such

information discloses the activity at the node, which
raises privacy concerns. The system, when consuming
y amount of electricity, provides UHVAC(y;xi,t) level of
comfort as utility at time t.

• Example 3: The previous examples were cases where
there was a natural parametrization of the utility func-
tions. A utility function that models the activity of a
household with numerous low-power electrical appli-
ances may possess a high-dimensional parametrization.
Such parametrization requires modelling every single
device separately. To avoid enumerating all devices, we
propose the following way of handling the case of an
arbitrary utility function U(y). Specifically, we approx-
imate the original utility function Uσi with a piece-wise
linear version UPWL,M : [ymin, ymax] × Rnσ(i) → R as
the solution to the following optimization problem:

UPWL,M (y;xi,t) = U(ymin) + max
q1,...,qM

M∑
j=1

x
(j)
i,t qj

s.t.
M∑
j=1

qj = y, qj ∈ [0,∆y], ∀j

(1)

where ∆y = ymax−ymin

nσ(i)
. In this formulation each node

is modelled as operating M devices and each device j
yields qj units of utility per unit of power consumed.
The utility function takes the form of a minimum of

Fig. 1. Sample parameters for a Plug-in Hybrid Electric Vehicle (PHEV)
charging schedule.
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Fig. 2. Overview of total utility maximizing demand response system.

linear functions and the parameters xi,t are defined as
x

(j)
i,t = Uσi(j∆y;xi,t)− x(j−1)

i,t , with x(0)
i,t = 0.

B. Pricing Algorithm

We are interested in computing the loads yi,t for each
node i and time t that maximize the total utility which can
be formulated as the following optimization problem:

maximize{yi,t}i,t

T∑
t=1

{
n∑
i=1

Uσ(i)(yi,t;xi,t)

}

s.t.
n∑
i=1

yi,t = 0,∀t ∈ {1, . . . , T}.
(2)

The objective is to maximize the total utility that nodes
enjoy, whereas the constraint dictates that power consump-
tion should be balanced for each time instance. As shown
independently in [7] and [13], it is possible to solve this
problem in a decentralized way. This is accomplished by
considering the dual problem:

maximize{pt}t

n∑
i=1

di(p), (3)

where:

di(p) = min
{yi,t}t

T∑
t=1

ptyi,t − Uσ(i)(yi,t, xi,t) (4)

The functions di(p) and the required directions ∇di(p)
depend on information local to each node i and are computed
by solving the discounted utility maximization problem (4)



for each node i.
Specifically, in successive iterations, a server publishes

the price signals {pt(k)}t∈{1,...,T}, each node i computes its
descent direction ∇di(p(k)). The descent directions are then
aggregated to produce a descent direction of the prices:

p(k + 1) = p(k)− β
n∑
i=1

∇di(p(k)) (5)

As shown in [7] and [13], under concavity assumptions of
utility functions Uσ(y;x) with respect to y for any parameter
x, process (5) converges to the optimal electrical prices that
provide incentives to nodes to operate in a globally efficient
manner. In the next section, we raise privacy concerns and
formally state a framework to handle them.

III. DEALING WITH PRIVACY

Computing electrical prices requires access to the utility
function of every node. Part of this information may be
sensitive data that a node is unwilling to share with the
community. In this work we interested in computing prices
that provide incentives for users to adapt their consumption to
the global optimum while having control over the amount of
private information that they disclose in the process. In order
to motivate the privacy concerns related with the process of
computing prices, let’s think of a concrete example. Consider
that data from Figure (1) are accessed while computing
electrical prices. Data such as the scheduling time of charging
of a PHEV, the number of occupants in a building and the
temperature set points of an HVAC system contain sensitive
information that is disclosed in the process of computing
prices. In order to mitigate the privacy concerns raised, we
employ the formal notion of differential privacy.

A. Differential Privacy

In the seminal work [3], the notion of differential privacy
was introduced. This notion features a concrete formulation
and makes few assumptions on the form of side information
that an adversary has access to. Moreover, it is tailored with
practical algorithms and composition theorems that allow
existing primitives to be extend to more complex systems.
Within the context of differential privacy, a mechanism, such
as the process of computing electrical prices, is allowed to
respond stochastically in order to smooth out the dependency
of the outputs on the inputs. Roughly speaking, differential
privacy is related to the sensitivity of a system and is built
upon the dogma that a differentially private mechanism
should respond almost identically to nearby inputs. The
aspect of privacy that one is interested in is captured by
an adjacency relation over the inputs. Formally stated:

Definition 1 (Differential Privacy [3]): Given an adja-
cency relation A ⊆ D × D, a mechanism Q : D × Ω → Y
is ε-differential private iff:

P(Qu ∈ S) ≤ eεP(Qu′ ∈ S), ∀(u, u′) ∈ A, S ⊆ Y (6)

where D is the set of inputs, Y is the set of outputs, Ω is
the sample space of the coin flips of the mechanism and the
probability P is taken over the measure of Ω. 2 The level of
privacy is controlled by the parameter ε, with smaller values
leading to stronger privacy guarantees. Increased levels of
privacy (ε → 0) result in the injection of higher levels of
noise, which in general degrades the performance of the
mechanism.
In the setting of utility maximization, the set of inputs D
is the set of the parameters x and the mechanism Q is the
process of computing prices. The adjacency relation A is a
design decision that captures what features of the inputs are
considered private.

The notion of differential privacy is accompanied by
numerous results [3]. One way to enforce privacy is through
the exponential mechanism:

Theorem 1 (Exponential Mechanism [9]): Given input
u ∈ U , consider the mechanism Q that responds with y ∈ Y
with probability:

P(Qu = y) ∝ e
ε

∆q q(u,y) (7)

where q(u, y) is a scoring function, with higher values
indicating more favourable responses. ∆q is defined as:

∆q = max
(u,u′)∈A,y

|q(u, y)− q(u′, y)|. (8)

Then Q is ε-differentially private.
We can also compose ε-differentially private mechanisms
that act on a partitioning of the input space in a single ε-
differentially private mechanism.

Theorem 2 (Parallel Composition [3]): Consider a set
of ε-differentially private mechanisms Q1, . . . , Qn, where
each Qi : Ui × Ωi → Yi is defined with respect to an
adjacency relation Ai. Then, the mechanism

Q : (×ni=1Ui)× (×ni=1Ωi)→ (×ni=1Yi) (9)

that returns:

Q (u1 . . . un) = (Q1u1, . . . , Qnun) (10)

is also ε-differentially private with respect to the adjacency
relation:

(u, u′) ∈ A ⇔
{
∃js.t. ui = u′i, ∀i 6= j and (uj , u

′
j) ∈ Aj

}
(11)

Another comforting fact that we will use is that any post-
processing on the output of a differentially private mecha-
nism does not weaken the privacy guarantees.

Theorem 3: Let Q : U × Ω → Y be an ε-differentially
private mechanism and f : Y → Z be any (measurable)
function. Then the mechanism f ◦ Q is also ε-differentially
private.

2Formally, we focus only on a rich enough σ-algebra of the set of outputs
Y . For the sake of clarity, this technical detail is omitted.



B. Pricing with Privacy

We proceed by describing an application of the differen-
tial privacy framework in the case of publishing electricity
price signals. We are interested in protecting the parameters
{xi}i∈{1,...,N} and consequently the utility functions Ui.
Choosing a suitable adjacency relation is crucial and can
drastically affect the performance of the resulting mecha-
nism. As a general rule, it is better to employ sparsely knitted
adjacency relations with strict privacy budget. Specifically,
we are interested in the following aspects of privacy:
• Temporal localization: An adversary should not be able

to monitor when an individual wishes to perform an
action. For example, consider the case of available slots
for charging a PHEV, with parameters as shown in (1).
The times that the individual travels between her home
and work are designated by the unavailability of the
PHEV for charging. The existence of the PHEV itself
is not considered sensitive information that needs to
be protected. Instead, the exact time that transportation
occurs is regarded as private information. As such, we
wish to provide ε-differential privacy with respect to the
adjacency relation Ai,1 that allows time-shifting activity
by a single unit of time. Strictly speaking, we define two
parameters x and x̃ to be adjacent with respect to Ai,1
if the one can be generated from the other by shifting
the time indexing by one unit:

(x, x̃) ∈ Ai,1 ⇔ xt = x̃t+1, ∀t (12)

where we assume periodic boundary conditions:

xt = x̃(t+1) mod T+1, for t ∈ {1, . . . , T} (13)

Note that the ε-differential privacy guarantee can be
extended to a Tε privacy guarantee with respect to
time-shifting by an arbitrary amount of time units. On
the downside, it is worth noting that if an adversary
collects information about a single event, such as the
time an individual leaves from work, there will be no
more privacy guarantees regarding other events within
the day.

• Activity monitoring: Another aspect of privacy is that
an adversary should not be able to infer the exact
activity taking place in a node. This notion can be easily
captured by requiring ε-differential privacy with respect
to an adjacency relation that allows small variations in
the parameters:

(x, x̃) ∈ Ai,2 ⇔ ‖x− x̃‖2 ≤ α (14)

Multiple adjacency relations is not typical in differential
privacy3. One way to merge the two adjacency relations is
by considering the following adjacency relation:

(x, x̃) ∈ Ai ⇔ min
τ∈Z

1

α
‖Dτx− x̃‖2 + |τ | ≤ 1, (15)

3It has been noted that adjacency relations do not differ much from queries
[11]. Thus, this should not be surprising.

where Dτ is the operator of time-shifting the signal x by τ
units of time, assuming periodic boundary conditions:

{Dτx}t = x(t+τ) mod T+1, for t ∈ {1, . . . , T}

In words, two parameters x and x̃ are considered adjacent
if a time shifted version of x is close to x̃. We include
a penalty term for the magnitude |τ | of the time shift.
The parameter α controls the importance of time shifts and
parameter perturbation.

IV. DIFFERENTIALLY PRIVATE PRICING

Each node uses the exponential mechanism to generate
a proxy version of its utility function, which it uses in
collaboratively computing electrical prices. This technique is
referred to as input perturbation which consists of generating
a private version of the data before computing the quantities
of interest. Another advantage of input perturbation is that
it requires minimal modifications to the original scheme of
computing prices. This dictates that privacy guarantees can
be incorporated into an existing pricing scheme. Beginning
with the adjacency relation Ai in (15), we consider the
following scoring function:

q(x, x̃) = −min
τ∈Z

[
1

α
‖Dτx− x̃‖2 + |τ |

]
(16)

Unfortunately, it is not trivial to sample the proxy parameters
according to the distribution

P(x̃|x) ∝ e εα q(x,x̃)

Instead, we approximate the scoring function using a soft-
maximum function:

q̂(x, x̃) = ln

[∑
τ∈Z

e−
1
α‖D

τx−x̃‖2−|τ |

]
. (17)

Scoring function q̂ is particularly appealing. It captures the
aspects of privacy that we wish to enforce. Also, sampling
from the exponential mechanism is simple since it can be
viewed as sampling a parameter perturbation δx, conditioned
on a discrete exponentially distributed delay τ :

P(x̃|x) ∝ eεq̂(x,x̃) = (18)∑
τ∈Z

e−ετ · e− ε
α‖D

τx−x̂‖2 (19)

Specifically, we draw the following noise samples:

τ ∼ Lap
(

1

ε

)
, {δxt}t

i.i.d.∼ N (0, 1), r ∼ Γ
(
T,
α

ε

)
(20)

where Lap(b) is the Laplace distribution with variance 2b2,
N (0, 1) is the standard normal distribution, and Γ(N, θ) is
the gamma distribution with shape N and scale θ. The proxy
parameter x̃ is then computed as follows:

x̂ = Dτx+ r · δx

‖δx‖2
, (21)

where τ is the time shift applied, with periodic boundary
conditions assumed once again, and δxt is the perturbation
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Fig. 3. Generating a proxy utility function from the private one.

of the utility function at each time step. The proxy version Ũi
of the utility function Ui is computed as depicted in Figure
3. Node i first shifts the utility function by τ time units.
Afterwards, the parameter x is perturbed by δx.

Remark 1: Due to the infinite-dimensionality of the
space of utility functions we cannot simply bound the differ-
ence ‖Ui− Ũi‖2. This is problematic for differential privacy,
as noted later. Instead, we project utility functions onto a
finite-dimensional subspace and enforce differential privacy
there.

Algorithm 1 Privatization of utility function.

Sample τ ∼ Lap
(

1
ε

)
Sample {δxt}t

i.i.d.∼ N (0, 1)

Normalize [δxt]t ← [δxt]t
‖[δxt]t‖2

Sample r ∼ Γ(T, αε )
Shift x̂i,t ← x(t−τ) mod T

for all t ∈ {1, . . . , T} do
x̃t = x̂t + rδxt

end for
Use Ũ(y) = Uσ(i)(y; x̂)

Theorem 4: The utility functions Ũi : R×{1, . . . , T} →
R, i ∈ {1, . . . , n}, defined as Ũi(y) = Uσ(i)(y; x̃) that result
from algorithm (1) provide ε-differential privacy guarantees
against time localization and activity monitoring up to level
α. In particular, it guarantees ε dp with respect to the
adjacency relation A′ 3 (x, x̃):

∃j s.t. xi = x̃i, ∀i 6= j and

SOFTMINτ (
1

α
‖Dτxj − x̃‖2 + |τ |) ≤ 1

where the soft minimum function used is defined as
SOFTMINτ (zτ ) = − ln

∑
τ e
−zτ .

Proof: The proof of this theorem is a direct application
of the exponential mechanism and the parallel composition
theorem.
These privacy guarantees can be extended to the electrical
prices, according to the resilience to post-processing theorem
[2]:

Corollary 1: The electrical prices that result from the
optimization problem bear ε-differential privacy guarantees.
The performance of the system is affected when providing
formal privacy guarantees. This introduces a trade-off be-
tween performance and privacy, where it is expected that
performance degrades with increasing privacy level (ε→ 0).
In particular, the performance is measured by the total utility

that nodes enjoy:

PERFORMANCE(p) =

n∑
i=1

T∑
t=1

Uσ(i)(y
∗
i,t;xi,t), (22)

where:

{yi,t}∗t = arg max
{yi,t}t

T∑
t=1

Uσ(i)(yi,t;xi,t)− pt · yi,t (23)

is the optimal power consumption of node i, given electri-
cal prices {pt}t∈{1,...,T}. Note that nodes use their private
parameters x while consuming electricity. Privacy concerns
that arise from the way billing is performed can be efficiently
handled by the work in [12], which provides a secure and
private technique computing bills.

V. PERFORMANCE - PRIVACY TRADE-OFF

Note that the prices will no longer be optimal. We
evaluate the performance of this scheme numerically in order
to depict the performance loss as a function of increasing pri-
vacy guarantees. A concrete example of a smart grid system
with the associated utility functions and pricing schemes is
presented in this section. We consider the case where N = 41
nodes compute prices that result in maximizing the total
utilization. Node 1 acts as a power plant with no privacy
concerns and reports the exact utility function. The setting
is similar to the one used in [13]. We employ truncated
quadratic utility functions from the family:

Uload(u) =

{
ωu− 1

4u
2, u ∈ [0, 2ω]

2ω, u ∈ (2ω,∞)

where the family parameter ω ∈ [0, 1] controls the level
of activity, with higher values denoting increased activity
and lower values indicating that the node is less interested
in computing large amounts of electricity. We compute the
prices hourly for a single day t ∈ {1, . . . , 24}. Residential
nodes stay relatively inactive during the morning hours and
become more active in the afternoon. Specifically, each node
becomes active at a random time ton ∼ N (10, 1.5), i.e., i.i.d.
normally distributed around µ = 10 with variance σ2 = 1.5,
and become inactive at toff ∼ N (17, 1.5). Parameter ω is
chosen i.i.d. across different time slots t and nodes i with
ωoff ∼ U [0, .4], i.e., uniformly distributed between the values
l = 0 and u = .4, and ωon ∼ U [.7, 1] for inactive and active
time slots, respectively. Node 1 is assumed to be the power
plant which lacks any privacy concerns and, thus, reports its
utility function exactly:

Ugenerator(u) = −.1u2

The nodes are interested in providing privacy guarantees
against temporal localization and activity monitoring of the
parameter vector {ωi,t}t∈{1,...,T}. Figure 4 depicts how price
signals deviate from the optimal prices for a variety of
privacy parameters, whereas Figure 5 depicts how the total
utility that nodes enjoy degrades with increasing privacy
parameters.



Fig. 4. Electricity prices for different levels of privacy (α = ε
5

).

Fig. 5. Utility degradation as a function of the privacy parameter ε with
α = ε

5
.

The performance of the system is evaluated according to
the equations (22)-(23). The total utility that the nodes enjoy
degrades with increased privacy. This is expected, as privacy
constraints do not allow computing the optimal prices and
lead to a loss in efficiency of the power system. According
to Figure 5, for moderate privacy levels (ε ≈ 3) there is only
a slight loss of perfomance. However, in the high privacy
regime, performance degrades significantly.

VI. CONCLUSIONS

In the present work, we highlighted privacy concerns
that are raised from employing a pricing scheme to achieve
demand response. Using the notion of differential privacy,
we proposed a perturbation scheme, where each node re-
ports noisy versions of their utility function. Formal guaran-
tees regarding privacy aspects of interest were given while
the performance-privacy trade-off was numerically explored.
While performance degrades dramatically in the high privacy
regime, it is possible to provide formal privacy guarantees
while slightly degrading performance.

Finally, some noteworthy issues, including possible fu-
ture extensions are the following:

• Merging multiple adjacency relations in a single relation
is a non-automated process. However, incorporating
multiple adjacency relations is a promising direction of
research. For example, in the case of the PHEV charging
schedule depicted in Figure 1, the user may be interested
in providing privacy with respect to the time driving or
the number of trips. The ability to adjust the privacy-
aware pricing scheme to incorporate new guarantees is
an important aspect.

• A proxy utility function is generated once every time
the optimization problem is solved. Each time that the
optimization problem is solved, each node can choose
either to keep the same proxy utility function or use
its privacy budget to generate a new one. In the first
case, every realization is going to be biased in the
sense that the temporal ’mean’ value of the proxy utility
function will not be the private one. On the other
hand, a mechanism that regenerates privacy budget is
required, in order to refresh the proxy function in regular
intervals.

• A stochastic treatment of pricing is interesting. First,
it can accommodate the random nature of renewable
energy sources. Second, as shown in [6], it is possible
to redesign the price computing mechanism to account
for the added variability which can significantly improve
the performance compared to a naive implementation.
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