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Abstract—In distributed electric vehicle (EV) charging, an
optimization problem is solved iteratively between a central
server and the charging stations by exchanging coordination
signals that are publicly available to all stations. The coordi-
nation signals depend on user demand reported by charging
stations and may reveal private information of the users at the
stations. From the public signals, an adversary can potentially
decode private user information and put user privacy at risk.
This paper develops a distributed EV charging algorithm that
preserves differential privacy, which is a notion of privacy
recently introduced and studied in theoretical computer science.
The algorithm is based on the so-called Laplace mechanism,
which perturbs the public signal with Laplace noise whose mag-
nitude is determined by the sensitivity of the public signal with
respect to changes in user information. The paper derives the
sensitivity and analyzes the suboptimality of the differentially
private charging algorithm. In particular, we obtain a bound on
suboptimality by viewing the algorithm as an implementation
of stochastic gradient descent. In the end, numerical experiments
are performed to investigate various aspects of the algorithm
when being used in practice, including the number of iterations
and tradeoffs between privacy level and suboptimality.

I. INTRODUCTION

Electric vehicles (EVs), including pure electric and hybrid
plug-in vehicles, are believed to be an important component
of future power systems [11]. Studies predict that the market
share of EVs in the United States can reach approximately
25% by year 2020 [8]. By that time, EVs will become a
significant load on the power grid [16], [1], which can lead
to undesirable effects such as voltage deviations if charging
of the vehicles are uncoordinated.

The key to reducing the impact of EVs on the power
grid is to coordinate their charging schedules, which is
often cast as an optimization problem with the objective of
minimizing the peak load, power loss, or load variance [15],
[2]. Due to the large number of vehicles, computing an
optimal schedule for all vehicles can be very time consuming
if the computation is carried out at a centralized server that
collects demand information from charging stations. Instead,
it is more desirable that the computation is distributed to
individual charging stations. Among others, Ma et al. [12]
proposed a distributed charging strategy based on the notion
of valley-filling charging profiles, which is guaranteed to be
optimal when all vehicles have identical (i.e., homogeneous)
demand. Gan et al. [7] proposed a more general algorithm
that is optimal for nonhomogeneous demand and allows
asynchronous communication.

To aid the coordination among stations, the server is re-
quired to publish certain public information that is computed
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based on the tentative demand information collected from the
charging stations. Charging demand often contains private
information of the users/consumers. As a simple example,
zero demand from a charging station attached to a single
home unit is a good indication that the home owner is
away from home. Note that the public coordination signal
is received by everyone including potential adversaries who
can potentially decode a consumer’s private information from
the public signal and put the consumer’s privacy at risk.

Recently, the notion of differential privacy proposed by
Dwork and her collaborators has received attention due to its
mathematically rigorous formulation [4]. The original setting
assumes that the sensitive user information is held by a
trustworthy party (often called curator in related literature),
and the curator needs to answer external queries (about the
sensitive user information) that potentially come from an
adversary who is interested in learning information belonging
to some user. For example, in EV charging, the curator is
the central server that aggregates user information, and the
queries correspond to public coordination signals. Informally,
preserving differential privacy requires that the curator must
ensure that the results of the queries remain approximately
unchanged if data belonging to any single user are modified
or removed. In other words, the adversary should know
little about any single user’s information from the results of
queries. Interested readers can refer to recent survey papers
on differential privacy for more details on this topic [3].

In this paper, we propose a differentially private algorithm
for distributed EV charging. The setting in this paper is
different from the setting used in the differentially private
distributed (convex) optimization work by Huang et al. [10].
In the work by Huang et al. [10], it is assumed that the coor-
dination signals do not change with changes in the individual
cost functions, which may contain private information and
needs to be protected. However, in the case of EV charging,
the coordination signal is sensitive to changes in private
information of the users (i.e., charging demand), so that a
different mechanism is needed.

Our first major contribution is computation of the sensi-
tivity of the public signal with respect to changes in private
information. Computation of sensitivity is often a major
challenge in constructing a differentially private mechanism;
once the sensitivity is computed, standard mechanisms such
as the Laplace and the exponential mechanisms can be read-
ily implemented. For the EV charging problem, computing
sensitivity of the public signal requires analysis on the global
sensitivity of the optimization problem solved by individual
charging stations. In the paper, we show that the global sen-
sitivity can be computed through local variational analysis on



the optimality conditions. The second contribution is analysis
on the suboptimality of the differentially private mechanism.
In particular, we show that the private EV charging algorithm
can be viewed as an implementation of stochastic gradient
descent [13], whose suboptimality analysis has been studied
extensively [17]. Similar techniques have been used in recent
work by Hsu et al. [9] on privately solving linear programs
using a differentially private variant of the multiplicative
weights algorithm (also known as exponentiated gradient
descent).

II. BACKGROUND
A. Notation

Denote the £,-norm of any z € R" by |zl|,. The
subscript p is dropped in the case of fs-norm. For any
convex set C C R™ and x € R™, denote by Il¢(z) the
projection operator that projects x onto C (in /5-norm). For
any function f (not necessarily convex), denote by Of(x)
the set of subgradients of f at x. For any A > 0, denote
by Lap(\) the zero-mean Laplace probability distribution
such that the probability density function of X ~ Lap(A)
is px(z) = 35 exp(—|z|/A). The vector consisting all ones
is written as 1. The symbol =< is used to represent element-
wise inequality: for any z,y € R”, we have x < y if and
only if z; < y; for all 1 <4 < n. For any positive integer
n, we denote by [n] the set {1,2,...,n}.

B. Distributed electric vehicle charging

In the EV charging problem, the goal is to charge n
vehicles over a horizon of 7T time steps with minimal
influence on the power grid. For simplicity, we assume that
each vehicle is handled by one charging station. For any
i € [n], the vector ; € RT represents the charging rates
of vehicle 7 over time. In the following, we will denote by
r;(t) the t-th component of r;. Each vehicle needs to be
charged a given amount of electricity £; > 0 by the end
of the scheduling horizon; in addition, for any ¢ € [T, the
charging rate r;(t) cannot exceed the maximum rate 7;(t)
for some given constant vector 7; € R”. The constraints on
r; can be expressed as follows:

0=r; 27,  1Tr=E;. (1
For convenience, we also define the set
C; := {r;: r; satisfies the constraints in (1)}.

The influence of a charging schedule {r;}?_, on the power
grid is quantified by a cost function U: R” — R. Formally,
the EV charging problem can be cast as an optimization
problem as described below:

{m}ig. Ut ri) (2)
s.t. ri €Ciy 1€ [n]

Throughout the paper, we assume that the objective func-
tion U in problem (2) is convex and its gradient VU is L-
Lipschitz in the ¢5-norm. This assumption holds for a number

Algorithm 1 Distributed EV charging algorithm (with a fixed

number of iterations).

Input: U, {C;}7",, K, and step sizes {ax }_,.

Output: {7"§K+1) .

Initialize {rfl) »_, arbitrarily. For £k =1,2,..., K, repeat:
1) Compute p*) := VU (Z?:l rl(k)).

(k+1)

3

r§k+1) =1, (Tgk) — akp(k)). 3)

2) For i € [n], update 7 according to

of common objectives such as minimal variance and minimal
peak load. The EV charging problem (2) can be solved
iteratively using distributed projected gradient descent [7] as
described in Algorithm 1, which guarantees that the output
converges to the optimal solution as K — oo with proper
choice of step sizes {ay }5_, (see [7] for details).

III. A DIFFERENTIALLY PRIVATE DISTRIBUTED
CHARGING ALGORITHM

A. Privacy in distributed EV charging

In EV charging, both #; and E; can be associated with
personal activities of the owner of vehicle i. For example,
7;(t) = 0 may indicate that the owner is temporarily away
from the charging station (which may be co-located with
the owner’s residence) so that the vehicle is not ready to be
charged. Similarly, F; = 0 may indicate that the owner is not
actively using the vehicle so that the vehicle does not need
to be charged. In this paper, we only address preserving the
privacy of {FE;}" ; (i.e., assuming that {7;}"_; is public)
and leave that of {7;}7_, as future work.

In the framework of differential privacy, it is assumed
that the output of any algorithms that depend on user
information can reveal individual’s private information, even
for coarse-granularity outputs that correspond to aggregation
of user information. Under this assumption, the distributed
EV charging algorithm (Algorithm 1) can lead to possible
loss of privacy of the users who participate in the scheduling.
It can be seen from Algorithm 1 that E; affects rgk) through
equation (3) and consequently also p(*). Since p(*) is broad-
cast publicly to every charging station, with enough side
information (such as collaborating with some participating
users), an adversary who is interested in learning private
information about some vehicle ¢ may be able to infer F;
from the public signals {p(*)}/ . Therefore, making the
exact gradient p(*) public can potentially lead to a loss of
privacy.

B. Differential privacy

In this section, we will modify the original distributed
charging algorithm (Algorithm 1) to preserve differential
privacy. Before giving a formal statement of the problem,
we first present some preliminaries of differential privacy.
Differential privacy considers a set (called database) D
that contains private user information to be protected. For



convenience, we denote by D the universe of all possible
databases of interest. The information that we would like
to obtain from a database D is given by ¢(D) for some
mapping ¢q (called query) that acts on D. In differential
privacy, preserving privacy is equivalent to hiding changes
in the database. Formally, changes in database can be de-
fined by a symmetric binary relation between two databases
called adjacency relation, which is denoted by Adj(-,-);
two databases D and D’ that satisfy Adj(D, D’) are called
adjacent databases.

Definition 1 (Adjacent databases). Two databases D =
{d;}_, and D' = {d,}? | are said to be adjacent if there
exists i € [n] such that d; = d for all j # .

A mechanism that acts on a database is said to be dif-
ferentially private if it is able to ensure that two adjacent
databases are nearly indistinguishable from the output of the
mechanism. Usually, in order to be useful, the mechanism
needs to be an approximation of the query of interest at
the same time. In the framework of differential privacy, all
mechanisms under consideration are randomized, i.e., for a
given database, the output of such a mechanism obeys a
probability distribution.

Definition 2 (Differential privacy [4]). Given ¢ > 0, a
mechanism M preserves e-differential privacy if for all R C
range(M ) and all adjacent databases D and D’ in D, it holds
that

P(M(D) € R) < eP(M(D') € R). “)

The constant e indicates the level of privacy: smaller e
implies higher level of privacy. The notion of differential
privacy promises that an adversary cannot tell from the out-
put of M with high probability whether data corresponding
to a single user in the database have changed.

C. Differentially private distributed EV charging

Recall that our goal of preserving privacy in distributed EV
charging is to protect the user information {E;}? ; even if
an adversary can collect all public signals {p(k)}szl. To put
this under the framework of differential privacy, we define
the database D as the set {F;}" ; (so that the universe D
consists of sets of size n whose elements are nonnegative
numbers) and the query ¢ as the K -tuple consisting of all the
gradients (p(1), p(® ... p)). Suppose for any user i, his
private event can change E; by at most some constant F,.
Then we can define the adjacency relation as follows.

Definition 3 (Adjacency relation for EV charging). For any
databases D = {E;}"; and D’ = {E!}"_,, it holds that

Adj(D, D’) if and only if there exists i € [n] such that
|E; — E!| < Emax, E; = Ej; forall j #i.

The problem of designing a differentially private dis-
tributed EV charging algorithm is stated as follows.

Problem 4 (Differentially private distributed EV charging).
Find a randomized mechanism M, that approximates p =
(pM,p@) ..., pf)) and preserves e-differential privacy,

Algorithm 2 Differentially private distributed EV charging.
Input: U, {C;} ,, K, {as.} ., n>1, L, A, and e.
Output: {ngH) n.
Initialize {rz(l)}?zl arbitrarily. Let ffl) = rfl)
and 0, = (n+1)/(n+ k) for k € [K].
For k =1,2,..., K, repeat:
1) If kK = 1, then set wi, = O0; else draw a random
vector w, € RT from the distribution (proportional
o exp (5 )
2) Compute p(¥) := VU (Z" r(k)) + wg.

i=1"1

for all 5 € [n]

3) For i € [n], compute:
rgkﬂ) =1, (rfk) — ap™®),

P = (1= 0)p ") 4 GrF Y.

i.e., for any adjacent databases D and D’ (as defined by
Definition 3), and any R C range(M,,), it holds that

P(M,(D) € R) < eP(M,(D') € R).

We present in Algorithm 2 a distributed EV charging
protocol that preserves e-differential privacy. The constant
A is defined as

A = maxmax{HHCi(Ei)(z) — HCi(Eg)(Z)H :

i€[n]

2 eRY, B, Bl st. |E; — El| < Emax}.

For clarity, we have used the notation C;(E;) to indicate the
dependence of C; on FE;. Details on computing A will be
presented later in Section IV. The purpose of the additional
variables {fgk)}szl is to implement the polynomial-decay
averaging method in order to improve the convergence rate
(a common practice in stochastic gradient descent [14]);
introducing {ﬁgk)},[f:l does not affect privacy.

Algorithm 2 is based on a variant of the widely used
Laplace mechanism in differential privacy. The Laplace
mechanism requires computing the £,-sensitivity (p > 1)
of a numerical query ¢q: D — R™ (for some dimension m).

Definition 5 (/,-sensitivity). For any query ¢: D — R™, the
¢p,-sensitivty of q under the adjacency relation Adj is defined
as

Ay :=max{||q(D) — ¢(D")],, :
D,D' € D s.t. Adj(D, D")}.

Note that the /,-sensitivity of ¢ does not depend on a
specific database D. In this paper, we will use the Laplace
mechanism for bounded ¢5-sensitivity. The mechanism op-
erates by introducing additive noise to g according to the
{5-sensitivity of q.

Proposition 6 (Laplace mechanism [4]). Consider a query
q: D — R™ whose (y-sensitivity is Aq. Define the mech-
anism M, as My(D) = q(D) + w, where w is an m-
dimensional random vector whose probability density func-



tion is given by p,(w) o< exp(—e|w| /Ay). Then, the
mechanism M, preserves e-differential privacy.

New private mechanisms can be constructed from basic
mechanisms (such as the Laplace mechanism) by making
use of adaptive sequential composition.

Proposition 7 (Adaptive segential composition [5]). Con-
sider a sequence of mechanisms {Mk}le, where M}, may
depend on My, Ms, ..., My_1 as below:

My(D) = My (D, My(D), M2(D), ..., Mi—1(D)).

Suppose My(-,a1,as9,...,a_1) preserves ex-differential

privacy for any ay € range(My), ..., ax—1 € range(My_1).

Then, the K-tuple mechanism M := (My,Ms,... , Mg)
. . . K

preserves e-differential privacy for € =) ;" | €.

Using the adaptive sequential composition theorem, we
can show that Algorithm 2 preserves e-differential privacy.
The key is to compute the /5-sensitivity of p(*), denoted by
A®) when the outputs of p™), p(2) ... p(*=1 are given, so
that we can apply the Laplace mechamsm on p*) according
to A) to ensure differential privacy.

Lemma 8. When the outputs of pW p@ L pt= gre
given, the ly-sensitivity of p'®) satisfies A®) = (k — 1)LA.

Proof: Consider any adjacent D and D’ such that E; =
E; for all j # . We will first show that when the outputs
of pM, p ... pk=1) are given, we have

(D) -
-

r€k>(D)H < (k- 1A,
(o) =0,

We will prove the above result by induction. For k = 1, we
haveH 1)D’— H—Oforallze[]

Consider the case When k > 1. For notational convenience,
we define for i € [n],

(k1)

o (D) =1 (D) — agap

Here, we have used the fact that the output of pt*~1 is given
so that p(k’l) does not depend on D. Then, for all j # i,
we have

|3 =)
= ||, (E’)(U(' _1)(D)) He, (g, (v (k 1) H
= |11, (0P (D")) = T, ““ Vo))
< U;kfl)(D/) (k: 1) H
o i §’“ V(o) =0

= [ Mte, ) 0 (D)) = T,y (P (D))
< [[Me, (00 (D) = Mg, (s (00
+[|me. E>< oft *”(D)) e,z (0~ (D))
§A+“U§k 1) _ k 1) H
-] <
where we have used the induction hypothesis

Tgk—l)(D (k 1) H

k—1 k—1
rj(. )(D)frg )

H —0, Vj#i.

Then, the f5-sensitivity of p*) can be computed as follows:
P ™) = (D)
S [0

i=1

Since the above results hold for all ¢ such that D and D’
satisfy Ej # E’ (j # i), we have

<L - rg’“)(D)} < L(k - 1A.

AR = max max Hp (k) H =

€[n] Ei,E;

]
With Lemma 8 at hand, we now show that Algorithm 2
preserves e-differential privacy.

Theorem 9. Algorithm 2 ensures that M), =
(P, p3), ..., pUI)Y  preserves  e-differential  privacy
under the adjacency relation as given by Definition 3.

Proof: For any k € [K], we know that p(*) satisfies e-
differential privacy, where ¢, satisfies e; = 0 and for & > 1,
2e

W _ 2
/A0 = FER-DIA

according to Proposition 6. Use the expression for A*) from
Lemma 8 to obtain

2(k —1)e

K(K-1)

Using the adaptive sequential composition theorem, we know
that the privacy of M, := (p(V),p, ..., p)) is given by
Zkl,(:lek: kE—1)=e. ]

D. Suboptimality analysis

€ —

2e K
K(K-1) Zk‘:l(

In Algorithm 3, we present the stochastic gradient descent
method with polynomial-decay averaging for solving the
following optimization problem:

f(z) s.t.

Theorem 10 (due to Shamir and Zhang [14]) gives an upper
bound of the expected suboptimality after finitely many steps

min. reX.
xT



Algorithm 3 Stochastic gradient descent with polynomial-
decay averaging.
Input: f, X, K, {ak}le, and n > 1.
Output: 7(K+1),
Initialize () and k& = 1. Let 2 = 2(1) and 6, = (n +
1)/(n + k) for k € [K].
For k =1,2,..., K, repeat:
1) Compute an unbiased subgradient g of f at xz® ie.,
Elgi] € 0f(a®).
2) Update z**D = My (z® — apgr) and £*+HD =
(1 — 0)2®) + Gpz+D),

for the stochastic gradient descent algorithm as presented in
Algorithm 3.

Proposition 10 (Shamir and Zhang [14]). Suppose X C
R™ is a convex set and f: R™ — R is a convex function.
Assume that there exist some constants p and G such that
sup, ey |7 — 2’| < p and max;<p<x E lgel® < G2 for
{9} | given by step 1 of Algorithm 3. If the step sizes
are chosen as oy, = c¢/\'k for some constant ¢ > 0 , then
for any K > 1, it holds that

E(f(z5+)) - ) <0 (W) G

where f* =inf,cx f(z).

A tighter upper bound can be obtained from (5) by
optimizing the right-hand side of (5) over the constant c.

Corollary 11. When ¢ = p/ @, the suboptimality bound (5)
becomes

E(f(F ) - f) <0 (nr> : (6)

By applying Corollary 11, we are able obtain the bound
of suboptimality for Algorithm 2.

Theorem 12. The expected suboptimality of Algorithm 2
after K iterations is bounded as follows:

E [U (Z?:l fz(KJrl)) - U*}
G \/ﬁK3/2LA>> o

<O (n\/ﬁp <\/E + 5

where U* is the optimal value of problem (2), and

=/ I,
G =max{||VU (X ;_,r:)|: ri € Ci, i € [n]},
Proof: In order to apply Corollary 11, we need to
compute p and G for Algorithm 2. The constant p can be
S 17| Recall the definition of G
as G2 = maxkEHngQ, where g, = [p*),p*) ... pR)]

obtained as p =

is formed by rep2eating p*) for n times, so that G? =
n - maxy, E ||[p¥)]|". Using the expression of p(¥), we have
max \/[|[p®|[ + E

G = \/ﬁ ke[K]

. (k) 2
</n gﬁ}g{”p Il + E||wk||}

< V(G + V2T K?*LA/2e).

Substitute the expression of G into (6) to obtain the result.

|
As K increases, the first term in (7) decreases, whereas
the second term in (7) increases. This implies that there
exists an optimal choice of K that minimizes the expected
suboptimality.

Corollary 13. The expected suboptimality of Algorithm 2
after K iterations is bounded as follows:

E {U (Z?:l fl(KJrl)) _ U*}
< O (nTn2p(GP LA 1), 8)
where U*, p, and G are defined in Theorem 12.

Proof: The result can be obtained by optimizing the
right-hand side of (7) over K. |
However, since it is generally impossible to obtain a tight
bound for p and G, optimizing K according to (7) usually
does not give the best K in practice, and numerical simula-
tion is often needed in order to find the best K for a given
problem.

IV. SENSITIVITY COMPUTATION

The bound on suboptimality of the private charging al-
gorithm given in the previous section still depends on the
unknown sensitivity A. The goal of this section is to obtain
a tighter bound by analyzing the sensitivity of the projection
operation (3) that appears in Algorithm 1.

Recall that the output of the projection operation in (3)
is the optimal solution of a least-squares problem in the
following form:

min.
xT

st. 0=z =Xa,

1
3 llz = wol” ©)
1Tz = b,

where x9, a, and b are given constants. For projection
onto C;, the constants a and b are given by a = 7; and
b = E,;. Denote the optimal solution (as a function of b)
of problem (9) by x*(b). Our goal is to bound the (global)
solution sensitivity with respect to b in the ¢s-norm, i.e.,

[2"(b2) = 2™ (b,

where b, and b, are any constants such that problem (9) is
feasible when b is assigned with b; and b is assigned with bs.
In fact, we will show a stronger result by bounding the ¢;-
sensitivity ||z*(ba) — 2*(b1)]|; and use the inequality

27 (b2) = 2*(b1)|| < |2 (b2) — 2™ (b1)l,



to obtain a bound on the ¢5-sensitivity. In the following, we
will obtain a bound on the solution sensitivity by bounding
the local solution sensitivity, i.e., changes in the optimal
solution under infinitesimal changes in b.

A. Local solution sensitivity of optimization problems

We first review existing results on computing local solu-
tion sensitivity of nonlinear optimization problems. Consider
a generic nonlinear optimization problem parametrized by 6
given as follows:

min.  f(z;0) (10)
st. gi(z;0) <0, i€ p
hj(x;0) =0, j€ld],

whose Lagrangian can be expressed as
P q
Lz, A\ vi0) = f(2:0) + Y Nigi(w:0) + > b (x36).
i=1 j=1

If there exists some set © such that the optimal solution
is unique for all # € ©, then the optimal solution as a
mapping z*: ©® — R" is well-defined. This uniqueness of
solution holds for problem (9) since its objective function
is strictly convex. Under certain conditions presented in
Theorem 14 below, the derivative of x* with respect to 6
exists. The first-order derivatives of the primal-dual optimal
solution (x*, \*,v*) are called local solution sensitivity and
are denoted by (&, A, 7). The local solution sensitivity can
be computed using Theorem 14 that is given by Fiacco [6].

Theorem 14 (Fiacco [6]). Let (z*,\*,v*) be the primal-
dual optimal solution of problem (10). Suppose the following
conditions hold.

1) x* is a locally unique optimal primal solution.

2) The functions f, {gi}i—,, and {h;}i_, are twice
continuously differentiable in x and differentiable in 6.

3) The gradients {Vg;(z*): g;(x*) = 0, ¢ € [p]} of the
active constraints and the gradients {Vh;(z*): j €
[q]} are linearly independent.

4) Strict complementary slackness condition holds: \} >
0 when g;(z*,0) =0 for all i € [p].

Then the local sensitivity (&, A, V) of problem (10) exists
and is continuously differentiable in a neighborhood of 0 .
Moreover, (&, A\, 1) is uniquely determined by the following:

p q
. 0
2 . . .
VL~:E+E Vgi-)\i—&-g th-ui—l—%(VL)—O

i=1 j=1

and for i € [p] and j € [q],

AV &+ gihi + N 20 =0,
. Oh;

B. Solution sensitivity of the distributed EV charging prob-
lem

After the local solution sensitivity is obtained using The-
orem 14, the global solution sensitivity of problem (9)
(with respect to b) can be obtained by integrating the local
sensitivity (over b). When strict complementary slackness
holds, the following lemma gives the properties of the local
solution sensitivity of problem (9).

Lemma 15. When strict complementary slackness condition
holds, the local solution sensitivity & € RT of problem (9)
(with respect to b) satisfies the two following properties.
D 17e=1
2) There exists * > 0 such that ©; = 0 or ©; = T for all
i€ [T].

Proof: The Lagrangian of problem (9) is
1
Lz, A\ p,v) = 3 |z — zo|*~ATz4uT (z—a)+v(b—1Tx).

It can be verified that all conditions in Theorem 14 hold.
Apply Theorem 14 to obtain

- A+p—v1=0 an
173 =1 (12)

Ny +aih =0 (13)
pi i + (@7 — aq)f; = 0. (14)

From the complementary slackness condition, i.e., for all ¢ €
7],
Ay =0

and wi(zf —a;) =0,

we can rewrite the conditions (13) and (14) as

and ﬂzxz = 0,

which imply that one and only one of the following is true for
any i € [T]: (1) &; = 0; (2) A; = 0 and i; = 0. Define Z :=
{i: &; # 0}, and we have

»ai=1

i€l

(15)

from (12). Note that (11) implies that for all 4, j € [T,
By — N i = &5 — N+ i

Since )\7 = 0 and p1; = 0 for all + € Z, we have z; = 15
for all 4,5 € Z. Therefore, there exists & such that z; = &
for all ¢ € Z and 4; = O for all ¢ ¢ Z. The fact that T > 0
follows from (15). |
Unfortunately, the strict complementary slackness condition
does not hold for all values of b. However, the following
lemma shows that the condition is only violated for a finite
number of choices of b.

Lemma 16. The set of possible values of b in problem (9)
for which the strict complementary condition is violated is
finite.



Proof: The optimality conditions for problem (9) imply
that

=N+ ut -l =1 (16)
172" =0 (17)
ANzl =0, ie[T) (18)

pi (x7 —a;) =0, (19)

Suppose the strict complementary condition violates for a
certain value of b. Denote the set of indices of the constraints
that violate the strict complementary conditions by Z, =
{i: X =0, 2f =0} and Z,, = {i: pf =0, =] = a;}. We
will only prove for the case where 7, is nonempty; the case
where Z,, is nonempty can be proved similarly.

When 7 is non-empty, from (19), we know that p} = 0
for all 4 € 7). For any ¢ € Iy, substitute 7 = 0, A} = 0,
and p7 = 0 into (16) to obtain v* = x¢ ;. For any other
j ¢ I, one of the following three cases must hold: (1)
a:;‘ = 0; 2) ;U;‘ =a; 3)0 < m;k < aj. The last case
implies that )\;f = ,uj = 0, so that we have x;‘ = xo,; + To,j,
where ¢ € 7. Since both a and z¢ are fixed, we know that
b= 1T2* can take at most finitely many values in order for
Ty to be nonempty. [ ]
An important implication of Lemma 16 is that the local so-
lution sensitivity 4(b) is Riemann integrable so that one can
then obtain the global solution sensitivity through integration.

Theorem 17 (Global solution sensivitity). For any b, and b
such that the problem (9) is feasible both b is assigned with
b1 and b is assigned with by, we have

[2*(b2) — 2™ (1)l = b2 — bul.

Proof: Without loss of generality, assume by > b;.
Since @; exists except at finitely many locations according
to Lemma 16 and ] is continuous in b, we know that &; is
Riemann integrable and

ba
2 (bs) — 7 (by) = / a4(b) db

according to the fundamental theorem of calculus. Hence
x;k(bg) — .’Er(bl) > 0 and

T

T bo o
NCACEFACHEDS /b B = [ 1tew)

b
=1 by
=by — by = |by — by].

Therefore we have

[2¥(b2) = 2™ (bu)lly = ) |27 (b2) — 27 (b1))]

-

Il
—

K2

(7 (b2) — 27 (b1)) = [b2 — ba].

I
.Mﬂ

&
I
—

|
Note that Theorem 17 holds for any z. Recall that in the EV
charging problem, the optimal solution z*(b) corresponds

to the projection operation Il¢,(g,)(-). By applying Theo-
rem 17, we can compute the global solution sensitivity for
the EV charging problem as

A= ?elz[ii](max{HHCi(Ei)(Z) — Hci(E;)(Z)H :

2 eRT, B B st. |E; — El| < Emax}

= max max |E; — E!| = Fyax.
i€[n] E;,E;

V. NUMERICAL SIMULATIONS

In this section, we consider the case when the objective
function is quadratic:

n 1 n 2
U imimi) = B d+ >y mill”™s

where d € R” is a given constant vector and can be viewed
as the base load profile in the context of EV charging. The
goal is to minimize the variation of the total load, which is
the sum of the base load and load incurred by EV charging.
The Lipschitz constant L for VU can be obtained as L =
1. In all simulations, we consider the case of homogeneous
stations, i.e., there exist ¥ and £ such that7; = 7and F; = F
for all i € [n]. We choose Eax = E.

A. Suboptimality analysis

In this setting, we have p = /n||7||, G = ||d|| + n |7,
and A = E. Substitute p, G, and A into (8) to obtain

E {U (Z?:l fZ(K-H)) _ U*}
< O (4T3 7] (1d] + n |7)*/4(E/ /1)

< O (w7l (n I 4(B/Y) . 0)
Note that the growth of the right-hand side with n is due
to the fact that the objective function U also grows with n.
In order to eliminate the dependence of U on n, we nor-
malize all load/demand profiles with respect to n. Namely,
there exist constants d,, 7, and E, (which correspond to
unnormalized quantities and do not change with n) such that
d =d,/n, 7 =7,/n and E = E,/n. Rewrite (20) in d,,
7, and F,, to obtain

E (U (S A"Y) -]

<O (nTSn A |7 (Buj0Y) @D

i.e., the suboptimality decreases with n and e at the
rate O((ne)~/4).

B. Results and discussions

We use the data in Gan et al. [7]. The scheduling horizon
is divided into 52 time slots of 15 minutes. The maxi-
mum charging rate is 3.3 kW for all ¢, and each vehicle
needs 10 kWh of electricity. For convenience, we normalize
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Fig. 1. A typical output of the differentially private distributed EV charging
algorithm (Algorithm 2) compared to the optimal solution of problem (2).
The number of iterations K = 4 and € = 0.1.

10
z z
K K]
£ £
3 -2 =
g g
S S
3 3
® [
2 210
k| s
[} [}
o o
107°
5 10 15 0 01 02 03 04 05
Number of iterations K €
(@) ()
Fig. 2. (a) Relative suboptimality of the distributed EV charging algorithm

(Algorithm 2) as a function of the number of iterations K for € = 0.1; (b)
Relative suboptimality of Algorithm 2 as a function of e (larger e implies
less privacy). The number of iterations K is optimized for every choice
of e. All experiments use ¢ = 0.5/n.

power/electricity against the total number of households m,
so that

3 kW
7(t) [kW/household] = %, t e [T)
10 [KkWh]
FE kW/h hold]| = ————.
[kW/household] AT

We consider a large pool of EVs (n = 100,000) in a
large residential area (m = 500,000). A typical output
from Algorithm 2 is plotted in Fig. 1 and is compared
with the optimal solution. Due to the noise introduced in
the gradient, the differentially private solution exhibits some
fluctuations compared to the optimal solution. Fig. 2a shows
the relative suboptimality as a function of K, where the
relative suboptimality is computed by normalizing against
the optimal value of problem (2). It can be seen from Fig. 2a
that an optimal choice of K exists, which coincides with the
the analysis at the end of Section III. In the end, Fig. 2b
shows the dependence of relative suboptimality on €. As the
privacy requirement becomes less stringent (i.e., as € grows),
the suboptimality of Algorithm 2 decreases.

VI. CONCLUSIONS

This paper introduces an e-differentially private algorithm
for distributed EV charging based on a modification of the
original distributed charging algorithm proposed by Gan et
al. [7]. The algorithm preserves privacy by publishing the
public coordination signal using the Laplace mechanism,
which perturbs the public signal with Laplace noise whose

magnitude is determined by the global sensitivity of the opti-
mization problem solved by individual charging stations. The
paper shows that the global sensitivity can be computed by
extending local sensitivity analysis on the optimality condi-
tions. By viewing the private algorithm as an implementation
of stochastic gradient descent, we can obtain the expected
suboptimality of the differentially private charging algorithm
by applying existing results on suboptimality analysis of
stochastic gradient descent. In the homogenous case, the
suboptimality of the e-differentially private algorithm with n
participating users scales as O((ne)~'/*). Both theoretical
analysis and numerical experiments show that there exists
an optimal choice of the number iterations: too few itera-
tions affects the convergence behavior, whereas too many
iterations lead to too much noise in the coordination signal.
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